Optimal covariance matrix estimation for high-dimensional noise in high-frequency data

نویسندگان

چکیده

We consider high-dimensional measurement errors with high-frequency data. Our objective is on recovering the cross-sectional covariance matrix of random optimality. In this problem, not all components vector are observed at same time and latent variables, leading to major challenges besides high data dimensionality. propose a new estimator in context appropriate localization thresholding, then conduct series comprehensive theoretical investigations proposed estimator. By developing technical device integrating feature conventional notion α-mixing, our analysis successfully accommodates challenging serial dependence errors. establishes minimax optimal convergence rates associated two commonly used loss functions; we demonstrate concrete cases when localized thresholding achieves rates. Considering that variances covariances can be small reality, second-order further disentangles dominating bias A bias-corrected ensure its practical finite sample performance. also extensively analyze setting jumps, show performance reasonably robust. illustrate promising empirical extensive simulation studies real analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate Optimal Estimation for High Dimensional Spatial Covariance Matrices

Spatial covariance matrix estimation is of great significance in many applications in climatology, econometrics and many other fields with complex data structures involving spatial dependencies. High dimensionality brings new challenges to this problem, and no theoretical optimal estimator has been proved for the spatial high-dimensional covariance matrix. Over the past decade, the method of re...

متن کامل

High Dimensional Inverse Covariance Matrix Estimation via Linear Programming

This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by “sparse” matrices. Taking advantage of the connection between multivariate linear regression and entries of the inverse covariance matrix, we propose an estimating procedure that can effectively exploit such “sparsity”. The proposed method can be computed using linear pro...

متن کامل

Random matrix theory and estimation of high-dimensional covariance matrices

This projects aims to present significant results of random matrix theory in regards to the principal component analysis, including Wigner’s semicircular law and Marčenko-Pastur law describing limiting distribution of large dimensional random matrices. The work bases on the large dimensional data assumptions, where both the number of variables and sample size tends to infinity, while their rati...

متن کامل

Fast covariance estimation for high-dimensional functional data

We propose two fast covariance smoothing methods and associated software that scale up linearly with the number of observations per function. Most available methods and software cannot smooth covariance matrices of dimension J > 500; a recently introduced sandwich smoother is an exception but is not adapted to smooth covariance matrices of large dimensions, such as J = 10, 000. We introduce two...

متن کامل

High dimensional covariance matrix estimation using a factor model

High dimensionality comparable to sample size is common in many statistical problems. We examine covariance matrix estimation in the asymptotic framework that the dimensionality p tends to∞ as the sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is employed to reduce dimensionality and to estimate the covariance matrix. The factors are observab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2022

ISSN: ['1872-6895', '0304-4076']

DOI: https://doi.org/10.1016/j.jeconom.2022.06.010